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Received 4 October 1976, in final form 25 March 1977 

Abd~act. Critical properties of Dyson’s hierarchical Ising model in one dimension with 
‘potential’ falling off like r-“+“) are examined in the range O < a < l  where a phase 
transition is known to occur. A new exact renormalisation group recursion relation is 
derived for a ‘dual’ spin probability density function. Together with a scaling-type assump- 
tion we obtain 11 =2-a  and S =(l+u)/(l-a) for all O<o<l. Independent evidence, 
however, suggests that 6 = 3 for O<aC 1/2, along with other classical critical exponents 
in this region. In the non-classical region 1/2 <a < 1 we obtain accurate numerical values 
for the critical exponents Y and y and various Au = U  - 1/2 expansions to third order in Au. 
The latter are in close agreement with our numerical estimates for small A a  but are in 
disagreement with similar expansions obtained to second order by Blekher and Sinai. The 
numerical values for 1 /2<0<  1 seem to fit no simple formula and suggest non-analytic 
behaviour of critical exponents as U + 1-. 

1. Introduction 

Dyson’s hierarchical model (Dyson 1969, 1971)’ to be referred to as HM, is a lattice 
model which simulates a system with power-law long-range interactions. It was 
originally proposed by Dyson (1969) to prove the existence of a phase transition for a 
one-dimensional Ising model with a power-law potential. Subsequently it was realised 
(Baker 1972) that the HM provides an example to which Wilson’s renormalisation group 
ideas (Wilson 1971) can be applied exactly. Blekher and Sinai (1974) also have 
announced a detailed investigation of the HM whose potential falls off like r-4 as r + ‘0, 

d being the dimensionality of the system and 1 < < 2 to guarantee the existence of a 
phase transition. They show that the critical behaviour of the model is determined by a 
fixed point solution of a certain non-linear integral equation with a Gaussian solution as 
the stable physical solution associated with ‘classical’ critical exponents for 1 <( < 3/2, 
while for 2 > 6 > 3/2 a non-Gaussian solution, resulting in non-classical behaviour, is 
the appropriate physical solution. They also obtained expansions for various critical 
exponents to second order in (-3/2 > O  for d = 1 which are similar to the usual 
E = 4 - d  expansions in renormalisation group calculations (Wilson and Kogut 1974). 
Similar results have been obtained by Fisher et a1 (1972) for the corresponding 
power-law potential Ising model, confirming the close similarity with the HM in the 
neighbourhood of the critical point. The spherical version of the HM has also been 
analysed (McGuire 1973) and shown to have identical critical behaviour to the 
corresponding power-law potential spherical model. A general class of models, termed 
asymptotically hierarchical, has also been considered by Blekher and Sinai (1 973, 
1975) with particular attention given to the existence of fixed points. 
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Our purpose here is to further investigate the critical behaviour of the HM in 
one dimension with potential falling off like t-('+''). While our approach parallels that 
of Blekher and Sinai (1974) and also Baker (1972) we follow a slightly different 
procedure that results in a new renormalisation group recursion formula that is ideally 
suited to analytical and numerical analysis. In 0 3 the critical exponents S and 7, which 
govern the behaviour of the system at the critical point, are determined assuming that at 
criticality certain functions defined recursively by the renormalisation group transfor- 
mation possess limits. Our results here are in essence in agreement with Blekher and 
Sinai (1974), Baker (1972) and Baker and Golner (1973,1977). There is some doubt, 
however, about the validity of our assumptions, particularly concerning 6, in the region 
0 <ha < 1/2 where independent numerical analysis of series (Guttmann et a1 1977) 
suggests that S sticks at three in this region. In § 4 we investigate the renormalisation 
procedure analytically in the region O<a s 1/2 and numerically over the whole range 
of O <  ha < 1, obtaining all relevant critical exponents to high accuracy. In 0 5 we 
develop expansions in powers of Aha = ha - 1/2 to third order in the non-classical regime 
1 > h a  > 1/2. Our Aha expansions differ from those of Blekher and Sinai (1974) in the 
second-order term, but agree with our numerical results for small Aha. The numerical 
results of Blekher (Blekher and Sinai 1975) and most resently of Baker and Golner 
(1977) are, however, in qualitative agreement with ours. Finally, we conclude in 0 6 
with a discussion and summary of our results. 

2. Exact renormalisation of the hierarchical model 

The Hamiltonian of the N-level, 2N-spin, HM we consider here is given by (Dyson 1969) 

p = l  r = l  

where S,,, is the spin-sum of 2' Ising spins in the rth block at the pth level, i.e. 

sp,r = ~ p - 1 , Z r - l  +Sp--1,2r = pi, for ( r  - 1)2p + 1 < i  = ~ r 2 ~ ,  (2.2) 
i 

pj = *l ,  c = 2l-" and H is the reduced magnetic field. 
This model is expected to behave like the one-dimensional Ising model with 

potential Jij = (i - j I - ( '+").  In fact Dyson (1969) has proved that in the thermodynamic 
limit, (2. l ) ,  and as a consequence the king model with potential Jj, above, has a phase 
transition when 0 <U < 1. In the sequel we restrict our consideration to this range of ha. 

Starting from (2.1) with N = 1 and separating off the term p = 1, the partition 
function for 2'-spins can be written as 

Using the elementary identity 
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with a =p2-'c' and y = $1,  together with the hierarchical structure of the model (in 
particular SI.1 = Sf-l,l + Sl-1.2) we immediately obtain (Thompson 1972), 

J-m 

In essence the transformation (2.4) decouples the top (lth) level of the hierarchy and 
splits the model into two equivalent 2'-'-spin hierarchical models with a modified field. 

Defining &x) by 

QIo'(P, H )  = { ~ ~ + ~ " ~ ' P / C ' + ' ) ' / ~ H H ~ / ~  (2.6) 
equation (2.5) can be written as 

(2.7) 
changing variables to H = ( ~ ' / 4 " ~ ) ' ' ~ y  and x = y +x '  then gives 

which is our basic renormalisation group recursion relation. 
In previous treatments of the HM, renormalisation group recursion relations have 

usually been derived for spin probability distribution functions. In particular, following 
Baker (1972), one can begin with the king distribution function 

Po(x) = S(x + 1)+6(x - 1) (2.9) 

and apply the standard renormalisation group recipe (Wegner 1972) as follows. 

( a )  Dilation 

First extend the 2N-spin system by a factor of 2 and write 
00 m 2 N + l  

QEii@, H )  = . . . exp(-PXN+J Po(&,,) dSo,r. (2.10) 
-W r = l  

( 6 )  Contraction by a partial trace 

Of the 2"+' degrees of freedom in (2.10) we eliminate half of them by a partial trace, 
which can be performed exactly in this case due to the hierarchical structure of the 
model. The details can be found in Baker (1972). 

( c )  Spin scaling and relabelling 
To regain the interaction term for the 2N-spin model we scale the spins by a factor 
c1/*/2 and relabel by writing 

s;-',r = c '/2sp,r/2. (2.11) 
Repeating this process 1 times we define 

2 N  00 CO 

Q%4 H )  = 1 . . . I, exp(-P%) fl PI(&,,> dSo,, (2.12) 
-CO r = l  
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and 

-@f”’(B, H) = lim 2-N In QEfl(B, H). 
N-rm 

(2.13) 

f“’@,H) is the free energy of the system in the thermodynamic limit and 9 ( x )  is 
defined recursively by 

m 

P/+l(c’/2y) = 2c-Il2 expQcy 2, I-, A (y + x - x )  h. (2.14) 

The renormalisation process then states that 

for all p, H and 1. We also note that 

Qg’@, H) = ObN’@, 2 c H) = e ~ p @ 2 ~ c - ~ / ~ H y ) P ~ ( y )  dy. 
m 

(2.16) 

It is an interesting property of the HM that one can construct a ‘dual’ model 
Hamiltonian %‘h, also with hierarchical structure, such that Q$!,)@, H) defined by (2.12) 
can be written as 

N -N/2 

2N m m 

Q?@, H )  = 1 . . . exp(-PZh) n IS(S0.r )  dSo,, (2.17) 
-m r = l  

with A ( x )  and P l ( x )  related by 

(2.18) 

The details are given in the appendix. The important thing to note here is the obvious 
interpretation of the A ( x )  as (dual) spin distribution functions. 

The starting point for our recursion relation, from (2.9) and (2.18), is 

P 0 ( x )  = 2 e-’ cosh(2p ‘I2x), (2.19) 

which although not defined by (2.6), gives from (2.8), the required QgO)@, H) specified 
by (2.6) and (2.17). The details are also given in the appendix. 

Finally we note that even though the recursion relation (2.8) has no explicit 
p dependence, the & x )  are all temperature dependent through (2.19). This tempera- 
ture dependence, although suppressed, should be kept in mind in the sequel. 

3. Critical exponents 6 and q 

In essence, the renormalisation group scheme states that at p = pc, a normalised spin 
distribution function, e.g. 

.rrr (x 1 = p/ (x )/F/ (0) (3.1) 
approaches a limit as 1 -j CO, and that the critical behaviour of the system is determined 
by the properties of that particular fixed point of the renormalisation group equation, 
which in our case is (2.8). 
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For the HM we are able to determine the values of 6 and 7 which govern the critical 
behaviour of the system at p = Bc, assuming that a t @  = &, the ‘free energy’ f(’)(Pc, H ) ,  
and the pair correlation function l+‘)(r, r’) ,  defined below, approach limits as 1 + 00. 

Granted this assumption, which we have been unable to prove, S and 7 are determined 
regardless of the particular fixed point of (2.8) the system approaches. While this is in 
agreement with results obtained from renormalisation group analysis of the power law 
long-range potential n-vector model (Fisher et a1 1972, see also Baker 1972) it is a 
little disturbing that in the so called ‘classical region’ OC cr 1/2, our 6 does not take its 
classical value of three, as it does for example for the hierarchical spherical model 
(McGuire 1973). It may well be that our assumption breaks down in this region (at least 
for r(’)(Pc, H)) but we have been unable to resolve this question at the present time 
except to note that if the Gaussian fixed point (0 <U < 1/2) is used in place of VI(X) 
below, the resulting ‘free energy’ is not defined. In addition, preliminary numerical 
study of series expansions (Guttmann et a1 1977) does indeed suggest that S sticks at 
three for 0 <U < 1/2. A similar difficulty, which seems to be studiously avoided, arises 
in renormalisation group treatments of short-range interaction &dimensional models, 
where the question of what value S takes in the classical region d > 4, is, as far as we are 
aware, unresolved. Finally it should be mentioned that similar points for the HM have 
been raised by Baker and Golner (1973). In the remainder of this section we will 
operate under the above assumption. 

In terms of q ( x ) ,  (2.12), using the relations involving&x) and&(x) of the previous 

and 

and noting that F’(0) does not depend on H, we have 

f‘”(P, H )  - f(Q, 0) = f ”@, H) -f“’@?, 0) 

where f“’(P, H) is defined by (2.13). It then follows from (2.15) that 

fO’(& H )  - fO’(P,  0)  

= 2-’[f”(p, 2‘c”’2H”f’’(p, O)]  

= 2-’[f‘”(p, 2‘c-‘12H) -f(‘)(p, O)]. 

Now, by definition 

f ( O ) ( P C ,  H )  - f ‘ O ’ ( P c ,  0 )  -H1+1’6 as H-,O+. 
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Consequently, since 2-’c1I2 = 2-1(1+u)/2 , we have for fixed H and 1 + 00, 

P ‘ ) ( P c ,  H )  - ”, 0) 
Hl+l/6 = 2 I (0)  (pc, 2-’c’/2H)-f‘O’(/3c, 0)]4I24(1+1/6) 1(1+1/6)/2 

- - 2IKl -c7)-( 1 + ~ ~ / 6 1 / 2 ~ 1 +  1/6 

C 

(3.8) 

So far our analysis is exact. If we now assume that the left-hand side of (3.8) has a limit 
as 1 + 00 it follows immediately that 

(1 -U) - (1 + U ) / S  = 0 

6 = (1 + U ) / ( l  -v). 
and hence 

(3.9) 
We note that when U = 1/2, (3.9) gives 6 = 3 and that the only way this value can be 
maintained for 0 C U < 1/2 is for the left-hand side of (3.8) to diverge as 1 + 00. 

To derive an expression for 7) we first define the spin-spin correlation function 
Tl(r, r’)  with respect to the probability density P,(x)  at criticality by 

ri (r,  r’) = (S0.r So,r’)r 

(3.. 10) 

(3.11) 

Applying the renormalisation process (a) ,  (b),  (c) described in the previous section to 
(3.11), P&) goes to Pi+l(x), 9&(H= 0) and QE)(Pc, 0) are unchanged, and S l , r S l , r ,  

goes to 21CuS~,rS~,r’. Hence 

(3.12) 

(Sl,rSl,r,)/ = t(S0,Zr-1 + S O , ~ ~ ) ( ~ O . Z ~ ’ - I  +S0,2r’))1 

= r I ( 2 r - l ,  2rf-l)+r,(2r,  2rt-1)+r1(2r-1, 2r’)+rI(2r, 2r’). (3.13) 

However, as shown by Dyson (1969), all four terms on the right-hand side of (3.13) are 
equal when r # r ’ ,  so that on combining (3.12) and (3.13) we have 

(3.14) 21+T,+l(rr r’) = 4r1(2r, 2r’) 

r l ( r ,  r’)  = 2-’(0-’T0(2’r, 2‘r’). 

Now, by definition, since the dimensionality d is unity, 

and hence by iteration 
(3.15) 

(3.16) t - ( d - 2 + 7 )  - t -(7-1) ro(r, r’)  - (r - r I -1r-r  I asIr-r’l-+oo. 
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Equations (3.16) and (3.15) then imply that for fixed r # r f  and 1 +CO 

r f )  - 21(2-u-7)lr - r f / - ( v - l ) .  (3.17) 

Hence, assuming that T l ( r ,  r f )  approaches a limit as 1 + m, we deduce that 

77=2-c. (3.18) 

Our results (3.9) and (3.18) are in agreement with previous workers, and we note 

(3.19) 

with d = 1. While it is likely that (3.18) is valid for the whole range O<(T C 1, recent 
series analysis (Guttmann eta1 1977) suggests that (3.9) is valid for 1 >a 3 1/2 but that 
S sticks at three for O<a < 1/2. If these latter results are valid the scaling relation 
(3.19) fails in the region 0 <a < 1/2, which is also the case for the HM spherical model. 

that these values for S and q satisfy the scaling relation 

d(S - 1)/(S + 1) = 2 - q 

4. Fixed point analysis 

To calculate the critical exponents v, y etc which characterise the behaviour of the 
system as @ +Pc,  we need to know, first of all, to which fixed point of the renormalisa- 
tion group equation (RGE) (2.8) the system approaches uta  = pc. The critical exponents 
are then determined using well established arguments (Wilson and Kogut 1974), by 
linearisation around the appropriate fixed point. It should be stressed that a neighbour- 
hood analysis of a fixed point alone is not enough to guarantee that the fixed point is the 
appropriate physical fixed point. One really needs to prove, as was done by Blekher and 
Sinai (1973) for the Gaussian fixed point of the asymptotically hierarchical models, that 
starting from po(x) at criticality the RGE approaches the fixed point in question. We 
make no attempt here to discuss this problem rigorously. Rather, we content ourselves 
with a numerical determination of the appropriate fixed point and a neighbourhood 
analysis of that fixed point to determine the critical exponents. 

A convenient basis to work with here consists of Hermite polynomials &(ax), of 
degree k, with tal G 1 to be fixed in a moment. This choice is motivated by the fact that 

m 

(4.1) 
-1/2 

7r eXp[-(X - y)2]Hk (U) dX = (1 - U 2)k/2Hk (U  (1 - U 2)-1'2y). 

Hence we expand A ( x )  in terms of Hermite polynomials and for convenience choose a 
normalisation scheme so that the zeroth-order coefficient is always unity. That is, we 
write 

The factor 2(1+a)k is introduced for later convenience, and only even orders of Hk are 
present since R ( x )  is even. The constant a is chosen to match (4.1) and the left-hand 
side of the RGE (2.8), i.e. 

(4.3) a = (1 - 2-(1+u) 112 1 .  
We now express the RGE for A ( x )  in terms of its Hermite coefficients B f ' .  First, 

using (4.1) we have 
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On squaring (4.4), the RGE (2.8) becomes 

where 

ay- (4.6) = 2(1+")/Z 

The product of the two Hermite polynomials in (4.5) can be expressed as a linear 
combination of Hermite polynomials (Erdtlyi et a1 1953), reducing the double sum in 
(4.5) to 

(4.7) 

where 1 = k '+  k"-  k .  The right-hand side of (4.5) can then be written in the form 
w w  

(B!))'[ 1-k 2 22k(2k)!(B(k1))2+ 2 ( 2 B f ' +  k ' = ]  k"= 1 r,,k:k"Bf!Bf~)H2k(*)] (4.8) 
k = l  k - 1  

where 

l o  otherwise, 
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is determined by the linearisation of the RGE (4.10)-(4.12) around the fixed point 
(4.13), namely, 

where v k , k r  is a matrix whose elements are given by 

and 

A * = 1 + f 22k(2k)!(Bt)2. 
k = l  

(4.16) 

In order to determine the appropriate physical fixed point, one must start from 
po(x), given by (2.19), expressed in terms of its Hermite expansion (4.2). Thus, using 
the formula (ErdClyi et ul 1953) 

we obtain 

U 

(4.17) 

(4.18) 

Comparing (4.2) and (4.18) we obtain 

BPI= [p/(21+u - 1)Ik/(2k)! (4.19) 

as the starting point for the recursion. Thus for given a and p, Blf' for any k and 1 are 
generated by equations (4.19), (4.11) and (4.12). Further, by adjusting p, one finds 
p = pc so that Blf' +B? as 1 + CO. Finally, once the appropriate fixed point is known, the 
critical exponents are obtained using well established arguments (Wilson and Kogut 
1974) from the maximum eigenvalue Al  of the matrix Vk,k'. For example 

v =In 2/ln A I ,  

y =U In 2/1n AI,  

(4.20) 

(4.21) 

etc, with other exponents obtained from scaling laws, subject to the requirement that 
A, > 1 and all other eigenvalues of Vk,k' are less than unity in absolute value. 

An obvious candidate for a fixed point is the Gaussian solution 

F,jl(x) = P * ( x )  = exp[(l -2-")x2] (4.22) 

of the RGE (2.8). In this case the Hermite coefficients BZ defined by (4.2) are easily 
found to be 

BZ=[(l -2-")/4Ik/k!, k = 1 , 2 , .  , . . (4.23) 

Our numerical procedure described below in fact confirms that this is the appropriate 
fixed point when O < a < 1 / 2 ,  in agreement with Blekher and Sinai (1974). The 
prescription above for determining critical exponents, or equivalently the maximum 
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eigenvalue AI of the linearised RGE (4.14), is in this case, however, rather unwieldy. We 
found it more convenient to separate off the Gaussian part by writing 

(4.24) 

D Kim and C J Thompson 

A ( x )  = exp [(I -2-')x2]h,(2-u'2x) 

and expanding hr(x )  in terms of Hermite polynomials. That is, if we write (c = 2 ' 7  
m 

hr(x)=Ag)(l+ k = l  1 Af'CkH2k(U'X)) (4.25) 

and follow the steps above leading to (4.10)-(4.12), we obtain (with a'=  (1 -c- ' ) ' '~) ,  

and 

A ' =  1 + f 22k(2k)!(Af))2, 
k = l  

(4.28) 

where Tk,kt,ks, is given by (4.9). Also, in terms of a general fixed point A: of 
(4.27)-(4.28) the linearised equations are 

m 

where 

The above representation has the advantage that for the Gaussian fixed point, A: = 0 
for all k L 1, and as a result the linearised RG transformation V' is diagonal. Thus from 
(4.30), since from (4.28) A'* = 1, the eigenvalues of V' are 

7 k = 1 , 2 , .  , . . (4.3 1) = 2C-k = 2(~-1)k+l 

When O <  (T < 1/2 only the first eigenvalue AI = 2" exceeds unity as required and (4.20) 
and (4.21) yield the 'classical' exponents 

U = l/u, y = 1, etc (4.32) 
in agreement with previous results. In the range 1/2 G (T < 1 we obtain a cascade of 
bifurcations as successive eigenvalues pass through unity, i.e. at points 

1 -k- ' ,  k = 2 , 3 , .  . . . (4.33) 
It follows that in this range the Gaussian fixed point cannot be reached by iteration from 
po(x) by adjusting only the one physical parameter p. It may, however, correspond to a 
higher-order critical point for a different model PO(X) containing more than one 
adjustable parameter (Riedel and Wegner 1972, Baker and Golner 1977). 

Before discussing our numerical procedure and results, particularly in the range 
1/2 -= U 1, we note that the borderline case (T = 1/2 requires special attention since in 
this case the second eigenvalue A2 is unity and hence the Gaussian fixed point is only 
'marginally stable'. We need then to consider the non-linear effect of the RGE 
(4.27H4.28) which in general is expected (Wegner and Riedel 1973) to give rise to 
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fractional powers of lnlp -&I, in the critical behaviour of the system. To see this we 
follow Wegner and Riedel (1973) and approximate (4.27)-(4.28) by neglecting all 
coefficients except A $’) and A !). 

In this way we obtain, when (T = 1/2 
Ay+”=21’2A(:)(1 +48A$”) 

and 

A:‘+”=A:”(l f 144A:”) 

where  TI,^,^ and T2,2,2 have been written explicitly. From (4.35) we obtain 

A$)..: - (1/144)(1 +lo)-’ asl+oo. 

Substituting (4.36) and the ansafz 

A :“ -A  2’/’(1+ 10)’ 

into (4.34) we find that 
A Y )  ,2(/+b)/2(1 + I  -1/3 

0) . 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

(4.38) 

Then, following the same line of argument as in Fisher et a1 (1972), leads us to the 
asymptotic behaviour of the correlation length 6 and the susceptibility ,y in the 
neighbourhood of the critical point: 

5 - t-’(ln t-’)2’3 (4.39) 

and 

,y -t-’(ln r-1)1/3 (4.40) 

as t = (P -&I + 0. These results are in agreement with those of Fisher et a1 (1972) for 
the power-law potential Ising model. 

In order to examine our procedure, involving the RGE (4.10)-(4.12), and the 
linearised RGE (4.14), numerically, we need to be able to terminate the infinite sums 
appearing in these equations at some finite value k = M. If the magnitude of the fixed 
point B; decreases sufficiently rapidly as k increases, the effect of terminating the sums 
should be small, and the approximation, which we will call the M-approximation, 
should improve with increasing M. In fact it will be seen that all numerical results are 
practically the same in the M-approximation for M a  10. 

In the M-approximation, the critical temperature Pc is the value of P in (4.19) for 
whichBjf’+B:, k = 1,2 , .  . . ,M,asl+co. TypicalbehaviouroftheBg’asafunctionof 
1 is shown schematically in figure 1 for several values of p and k = 1. From this 
behaviour we were motivated to take the following practical scheme to determine &: 
Let ( P I }  be the sequence of values of p for which 

B$‘-l)(P/) =By(P/) .  (4.41) 

Then it is reasonable to expect that the sequence of will approach the limit pc as 
I +m. Such a sequence of for c = 1/4 in the 12-approximation is shown in table 1. 
The sequence, for sufficiently large 1, converges with approximately exponential 
behaviour. Thus, we can form a new sequence {(PI} by an exponential interpolation 
using P I - 2 ,  PI - ,  and P I .  That is, we fit P I  to the form 

(4.42) PI = Pc + constant x b-‘ 
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M 1 

Figure 1. Schematic behaviour of B\') against I for temperatures close to &. Here 
@ I  > P Z > B c > B S .  

Table 1. A portion of the PI and @; sequences for (T = 1/4 in the 12-approximation. 

1 @I-0.116028) X 10" (Bl-0.1 16028) X 10" 

25 10 120 
26 9976 
27 989 1 
28 9840 
29 9810 
30 9792 
31 978 1 

9768 
9762 
9769 
9764 
9767 
9765 
9764 

and obtain P I  and (4.42). This new 
sequence is also shown in table 1 from which we conclude that pc = 0.11602898 when 
U = 114. 

Having determined &, the next task is to find Al .  One way of doing this is to use the 
values of pc, obtained by the above method, in (4.19) and generate the Bjf', which for 
large 1, should approach the fixed point values B f  to be used in (4.15) and (4.16). This 
procedure, however, has the disadvantage that it is very sensitive to small errors in pc. 
As an alternative method we first look at the Bjf' at p = P I  where p1 satisfies (4.41). In 
table 2 we show B!"(&) and B!)@l) for a range of 1, for U = 1/4 in the 12- 
approximation. These sequences also converge very rapidly and if we take the 3-point 
extrapolation as in (4.42) we obtain the values in parentheses, which are in excellent 

from the value of pc determined from 

Table 2. A portion of the B\"@I) and E$)@, )  sequences and the corresponding 3-point 
extrapolations (in parentheses) for 

1 (8:"@,)-3.977X 10-*)X lo9 (B$)(BI)-7.910X 1 0 - 4 ) ~  10" 

= 1/4 in the 12-approximation. 

25 6992 
26 667 1 
27 6444 
28 6283 
29 6170 
30 6090 
31 6033 
Exact value for the 
Gaussian fixed point 

(5906) 
(5890) 
(5896) 
(5890) 
(5904) 
(5896) 
(5892) 

5896 

4162 (6089) 
4728 (6091) 
5129 (6104) 
5412 (609 1) 
5612 (6094) 
5754 (6102) 
5854 (6092) 

6096 
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agreement with the analytic result (4.23) listed at the bottom of table 2. Here we see, as 
expected, that for U = 1/4, the fixed point is indeed the Gaussian. 

Encouraged by this success we took Blf'(pI), k = 1,2, . . . , M as the lth approxima- 
tion to B t  and used these values in (4.15) to find the relevant eigenvalue which we 
denote by A,,!. Since we are only interested in the one eigenvalue exceeding unity, the 
simplest way we could find to determine that eigenvalue was to use Newton iteration to 
find A1 > 1 for which det( V- AJ) = 0. The determinants of the Mx  M matrices were 
calculated by the Gaussian elimination method and all algorithms were set up in the 
double precision mode. A sequence of Al./ thus obtained for U = 1/4 in the 12- 
approximation is shdwn in table 3 together with the 3-point extrapolations. From this 
table one would conclude that Al = 1.892071 whereas the exact value for the Gaussian 
fixed point is AI = 1.189207115. 

Table 3. A portion of the AI,,  sequence and the 3-point extrapolated values for U = 114 in 
the 12-approximation. 

1 A1.1 Extrapolated values 

25 1.1892 1 1234 
26 1,1892 10028 
27 1.189209 174 
28 1.18920857 1 
29 1 * 189208 145 
30 1 a189207843 
31 1 *189207630 
Exact value for the 
Gaussian fixed point 

1.1892071 1 
1318920713 
1.189207 10 
1.189207 12 
1.189207 12 
1.1892071 1 
1.18920712 

2" = 1.1892071 15 

The above algorithm proved successful over the whole range 0 <U < 1 except near 
(T = 1/2 where the convergence of Al./ was very slow. We found that the convergence of 
/31 and Al./ for U 3 1/2 could be improved by generating P I  for which 

instead of (4.41). Even so, at (T = 0.55 for example, we needed sequences up to 1 = 46 to 
obtain four-digit accuracy for Al,  whereas for values of ~f close to unity, sequences 
up to 1 = 20 were sufficient to obtain eight-digitaccuracy. 

In table 4 we show how the Al,t change with M for three values of U. As mentioned 
before, for M 3 10 there is essentially no change in the Al./ to the accuracy indicated in 
the tables. It was suficient then for our purposes to fix M = 12. The critical tempera- 

Table 4. Dependence of AI on the size of the approximation. M is the value at which the 
infinite sums in (4.1 I), (4.12) and (4.15) are cut off. 

M U = 114 U = 0.55 U = 3/4 

4 1.188944 1.3936 1.39211 
6 1.189205 1.4204 1.40430 
8 1.189207 1.425 1.40449 

10 1.189207 1.426 1.40449 
12 1.189207 1.426 1.40449 
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0.05 0.01827630 ' 
0.10 0.03864942 
0.15 0.061458 12 
0.20 0.08709735 
0.25 0.11602898 
0.30 0.14879440 
0.35 0918602929 
0.40 0.22848165 
0.45 0.27703568 
0.50 0.33274779 J 

tures and A, thus obtained for a range of 0 <a < 1 are summarised in table 5. For 
a s 0.35 we confirmed that the fixed points are all Gaussian to the accuracy indicated in 
tables 2 and 3. As a approached one-half the convergence was slow and the accuracy of 
the approximation was consequently decreased. There is little doubt, however, that the 
fixed points are all Gaussian for O<a < 1/2. As a increases from one-half, A1(a) at 
first increases slowly then decreases until it reaches the value unity at a = 1, where the 
critical temperature is zero and the phase transition vanishes. The behaviour in the 
neighbourhood of a = 1 is discussed in § 6. 

2" 

Table 5. The values of &, AI, Y and y for O<u < 1. The errors are at most *l in the last 
digit shown. 

U B c  AI Y Y 

1 

5. Au-expansion 

For 1/2 < U <  1, a nowGaussian fixed point, which we have been unable to find 
analytically, determines the critical behaviour of the HM. For CT close to and exceeding 
one-half, however, an expansion of the maximum eigenvalue A1 of V' equation (4.30) 
in powers of Aa = a - 1/2 can easily be constructed. In the usual RG analysis (Wilson 
and Fisher 1972) this expansion corresponds to the well known E = 4-d expansion. 
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From (4.27) we see that when 

cr = 1/2+Aa= 1 / 2 + ~ / l n  2 (5.1) 

a non-Gaussian solution arises for which A 2* = -472  + O(e2). Since T k . 2 , ~  = 0 for k > 4 
we then immediately see that AT, AT and A: are of order e2 and since Tk,1,2 = Tk.3.2 = 
Tk,4,2 = 0 for k > 6, only AT and A: are of order e3. In general, due to the nature of the 
Tk,k’ ,k”,  A&-1 and ATk are of order ek except when k = 1. 

For this non-Gaussian fixed point, (4.30) becomes to first order in E, 

vi,k, = 21-k’2[6kk‘+ (k6kk.- Tk,k,,2/72)E + O(Ez)] (5.2) 
with eigenvalues 

For k = 2, A2 = 1 - 2 ~  +O(e2) so that provided E > 0 (i.e. U > 1/2), only A1 exceeds 
unity for sufficiently small E, as required of the physical fixed point. 

We have carried through the straightforward and infinitely tedious perturbation 
calculation to third order in E and find that 

A 7 = -2(2 +42)e2/27 - 14(4+3J2)e3/27+ O(e4) 

AT = -e72 - (15 + 1642)c2/216 + (209 + 144J2)e3/324 + O(e4) 

A $ = (1 + 4 2 ) ~  2/324 + (5 + 342)~’/162 + O ( E ~ )  

A = e2/ 10368 - (33 + 1 6J2)c3/ 15552 + O(e4) (5.4) 

AT = -(1+ J2)e3/23328 + O k 4 )  

A: = -c3/2239488 +O(r4) 

with all other A t  of higher order in E than E ~ .  The maximum eigenvalue of V was then 
found to be 

A1 = (42)[ 1 + ~ / 3  - (23 + 3 2 4 2 ) ~  2/ 18 + (1 699 + 11 5 2 4 2 ) ~  3/54 + O(e4)]. (5 .5 )  

(5.6) 
which differs from our result in the second-order term. Numerically for U = 0.55, 
corresponding to E = 0.05 In 2, we find in 0 4 that AI = 1.426. The partial sums to 
second- and third-order in (5 .5 )  for this value of E give 1-424 and 1.428 respectively, 
which is in very good agreement with the numerical value. The partial sum to 
second-order from (5.6) on the other hand gives 1,439 so we are inclined to believe our 
result (5 .5 )  especially as we have checked it independently on several occasions. 

For the critical exponents v and y, (54, (4.20) and (4.21) yield, in terms of Acr, 

Y- ’  = f[ 1 + 2Au/3 - 8(3 + 4 4 2 ) ( A ~ > ~ ( l n  2)/9 

Blekher and Sinai (1974) on the other hand report that, in our notation, 

A1 = (42)[1 + ~ / 3 + ( 7 1 +  1 3 0 4 2 ) ~ ~ / 5 4 + 0 ( ~ ~ ) ]  

+ 16(323 + 222&)(A~)~(ln 2)2/81 + O(AU)~] 
and 

(5.7) 

y = 1 +4Aa/3 + 8[(3 + 442)(ln 2) - l](Acr)2/9 - 16[(323 + 22242)(ln 2)2 

- 3(3 + 442) In 2 - 3 ] ( A ~ ) ~ / 8  1 + O(AU)~. (5.8) 
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Equation (5.8) is to be compared with the result for the king model with a 
power-law potential obtained by Fisher er a1 (1972): 

y = 1 + 4Au/3 + 8(4 In 2 + 7r - l)(Au)’/9 + 0 ( A d 3 .  (5.9) 

The critical exponents for the HM and Ising model with power potentials are then seen to 
agree to first-order in A u  but differ slightly to second-order. Numerically, the coeffi- 
cients of (Aa)* are 4.445 and 4.368 for (5.8) and (5.9) respectively. 

It is apparent that all of the above expansions are asymptotic but nevertheless, they 
should give fairly accurate estimates for Au d 0.05. 

6. Discussion and summary 

In this paper we have investi ated Dyson’s hierarchical model in one-dimension, with 
‘potential’ falling off like 1 where a phase transition is 
known to occur. A new exact renormalisation group recursion relation, which is ideally 
suited to numerical and analytical investigation, was derived for a ‘dual’ spin probability 
density, giving ‘classical’ critical exponents for O<u d 1/2 and non-classical exponents 
for 1/2 < U < 1. A scaling type argument gave r) = 2 -U and 6 = (1 + U ) / (  1 - U )  for all 
0 <U < 1.  While the former is probably true, independent series analysis suggests that S 
sticks at its classical value of three for U d 1/2. 

In the non-classical region 1/2 <U < 1 we obtained accurate numerical values for 
the critical exponents v and y, given in table 5 .  Other critical exponents can then be 
obtained from the usual scaling laws. We also obtained various A u  = U - 1/2 expan- 
sions, analogous to the usual RG E = 4 - d expansions, to third-order in Au, which are in 
close agreement with our numerical values for small A u  (see figure 2) but disagree with 
similar expansions obtained to second-order in A u  by Blekher and Sinai (1974). Our 
numerical results are, however, in qualitative agreement with similar results obtained 
by Blekher (Blekher and Sinai 1975) and most recently by Baker and Golner (1977). 

in the range 0 <U 

Flspre 2. y- ’  against U for 1/2 <U < 1 obtained from table 5 (full circles). The full and 
broken lines are the An-expansions of y-’ truncated at first- and second-order respectively 
in bo. For O<u =s 1/2, y = 1. 
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We were not successful in finding a simple formula to fit our numerical values for 
1/2 <a < 1 to the accuracy indicated in table 5 .  The best 'simple expression' we were 
able to concoct was 

lnAl=( l -a ) ln( l -U)- l  (6.1) 

which differs from the values given in table 5 by less than 1fo/o for 1/2 Sa < 1. For U 

close to unity (a a 0.99) a better approximation is 

(6.2) In AI =0.64(1-a) ln(1 -a)-'+ 1-8(1-a). 

In any event, it seems clear that In A,, and hence the critical exponents Y, y, etc. are 
non-analytic at a = 1 as well as at U = 1/2 as suggested in 0 5 .  

Granted that In A1 approaches zero as a approaches unity, the critical exponents y 
and v become infinite as a approaches unity. The critical exponent B on the other hand, 
given by 

fi  = (1 -a) In 2/2 In A, (6.3) 

for 1/2 <a < 1 decreases to zero as U approaches unity. This behaviour, together with 
the fact that the critical temperature approaches zero as a approaches unity, seems to 
suggest that the HM exhibits essentially singular behaviour at zero temperature and a 
equal to unity, in accordance with the one-dimensional short-range interaction Ising 
model. 

In figure 2 we have plotted the values of y-l  against u in the range 1/2 < a < 1. It is 
to be noted here that y is monotonic in a even though In A,, and hence Y, is not. Also, as 
seen from figure 2, the y-l data fall very nearly on a straight line for 1/2 C a  C 3/4, so 
that in this range, log A1 can also be approximated by 

In A, =a(l.175-0.964a). (6.4) 

Also shown on figure 2 are the partial sums to first- and second-order in A a  of the 
Aa-expansion for y-l, which from (5.8) reads 

y - '=  1-4Aa/3-8[(3+4d2) In 2-3](A~)*/9+O(Aa)~.  (6.5) 

The partial sums to third-order diverge more strongly than the second-order sums as Au 
increases. 

Finally, when we compare the behaviour of the critical exponents of the HM for U 

close to unity with that of the corresponding long-range Ising model, obtained numeri- 
cally by Nagle and Bonner (1970), we find that, except for y, there is rough qualitative 
agreement. As a approaches unity we find that y diverges for the HM whereas Nagle 
and Bonner report y = 2.2 for the Ising model. This discrepancy is not altogether 
surprising in view of the fact that the HM has no phase transition at a = 1, while for the 
Ising model, there is a strong possibility (Thouless 1969) that there is a phase transition 
when a = 1, corresponding to an inverse square law potential. The critical behaviour of 
the two models is, on the other hand, identical for O < a  6 1/2 and 'almost identical' for 
a 3 1/2 as indicated in §§ 4 and 5 respectively. It is quite likely that the two models 
have different critical behaviour for 1 / 2 < a < l ;  becoming more apparent as U 
approaches unity. The lack of accurate numerical data for the Ising model at this stage, 
however, makes it impossible to assess this difference in any quantitative way. 
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Appendix. Derivation of equations (2.17) and (2.18) 

Let Sp,r, p = O ,  ..., N, r = l , . . . ,  2N-p have the same hierarchical meaning as in 
equation (2.2) and let us define a 2N x 2N symmetric matrix J whose elements are given 
through 

where bp are arbitrary constants. The structure of such matrices was investigated by 
McGuire (1973). In particular, the eigenvectors of J are independent of bp and the 
eigenvalues are 

k 
h k  = C 2-’bP, 

p = o  
fork =0 ,1 ,2 , .  . . , N ,  

hk being 2N-k-’-fold degenerate for k = 0, 1, . . . , NL 1, and nondegenerate fork = N. 
Also, 

2N 

j = l  
C Jij = A N  for any i .  

Since the eigenvectors of J are independent of bp, if we consider 

with b; chosen so as to satisfy 

( f 2-’b;)( f 2-’bP) = 1 
p =o P = o  

for all k = 0,1, . , . , N, then it is not difficult to see that J‘ is the inverse of J. 
Now to derive equation (2.17), we first write equation (2.12) in the form 

where we have added and subtracted a term P Z::, S:,, in the exponent. 
Identifying bp = c p  in equation (A. l), we write (A.6) as 
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Next, we utilise the familiar identity 

If we change the integration variable in (A.9) to 
zi = p 2 ( y i  +PH)/2, (A. 10) 

equation (A.9) becomes 

a;)@, H )  = T r - 2 N - 1 D - 1 / 2  I . . . 1 exp( -1 Jij’(zi -/3’/’H/2)(zj -/3 ’j2H/2) 
m 02 

-m -m i j  

2N 

r = l  

m m 

- I, a * I, - exp(-PXL) fl A h )  dzr 

where A ( x )  is related to P,(x)  by (2.18) and Xly is defined by 

(A.11) 

(A.12) 

Equation (A.12) is the required equation (2.17). The precise form of Xly is not 
important here. We merely note that from (A.4) (J’ = J- I ) ,  Xly has the same hierarchi- 
cal structure as the original XN. 

To complete the logical circle we need to show that &x) given in terms of S ( x )  by 
(2.18) satisfies the recursion relation (2.8), and is in fact related to the partition function 
by (2.7). 

Fl+ ’ (y )  = \ e ~ p ( 2 ~ ” ~ x y ) 2 c - ” ~ ~ , ( c - ~ ~ ~ ~  +z)P~(c-’/~x -2) dz dx. (A.13) 

Changing variables to U = c-’’~x + z and U = c-I/*x - z then gives 

Firstly from (2.18) and (2.14) we obtain 
m m  

-a -m 

m m  

R+l(y)= J J e~p[@c)’/~y(u +u)lS(u)P~(u)du do 
-m -m 

(A. 14) 
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On the other hand, from (2.18) 
m 

-1/2 r I-, ~ ( x )  exd-(x - y ) 2 ~  dx 
m m  

== I m  I, -1/2 exp[-(x -y)?] e x p ( - / 3 ~ ~ + 2 / 3 ~ / ~ u x ) P 1 ( u )  du dx. (A.15) 

Interchanging the order of integration and integrating on x then gives 
.m 

Comparing (A.14) and (A.16) gives the required recursion relation (2.8). 

that it is valid for all 1 = 1,2,. . . then follows easily by induction. 
Finally from (2.19) and (2.8) it is easily shown that (2.6) is valid for 1 = 0. The fact 
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